<H
oy
o
>
T
-
<
(o=
<C
‘g
oz
3 Q-
| O
! (-
| w
S
-
= 2

PO
| DA

By

=500 04|
Cop_y2‘6 of 70 copies

IDA PAPER P-1322 LEVEL IR

FURTHER DEVELOPMENT OF A STRATEGIC WEAPONS

EXCHANGE ALLOCATION MODEL

Jeffrey H. Grotte

January 1978

% ON STA A
X 2 od for public release;
47" Disuibution Unlimited \

=
re

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION




The work reported in this document was conducted under IDA's
Independent Research Progrom. lts publication does not-imply
| endorsement by the Department of Defense or any other government
agency, nor should the contents be construed as reflecting the

official position of any government agency.

.

This document is unclassified and suitable for public release.

o




P

UNGLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER /
P-1322

|l. GOVY ACCESSION ND| 3. RECIPIENT'S CATALDG NUMBER

4. TITLE (and Subtitfe)

FURTHER DEVELOPMENT OF A STRATEGIC
WEAPONS EXCHANGE ALLOCATION MODEL

S. YYPE DF REPDAT & PENIDD COVERED

Final

§. PERFOAMING DRG. REPORT NUMBER

P-1322

7. AUTHOR(s)

Jeffrey H. Grotte

8. CONTRACT OR GRANT NUMBER/s)

Independent Research

9. PERFDAMING ORGANIZATION NAME ANO ADDRESS
Institute for Defense Analyses
Program Analysis Division
400 Army-Navy P‘rive,Arlington,VA2200P

10. PROGRAM ELEMENT. FRDJ!CI’ TASK
AREA & WDRK UNIT NUMBE R

15. CONTRDLLING DFFICE NAME AND ADORESS

12. AEPORY OATE

January 1978

13, NUMBER OF PAGES

41
. IONI'DRING AaiNEV NAME & 2DOAESS(iI dillesent from Conteniling Otlice) 1S. SECURITY CLASS. (of this rapert)
Unclassified
1Se. DECLASSIFICATION DOWNGRADING
SCHEDULE

N/A

1. OISTRIBUTION STATEMENTY (of this Repory)

This document is unclassifled and suil
release.

table for public
STX

Approved for

17. OISTRIBUTION STATEMENT (of the abatraci entersd in Bioch 20, 11 ditlerent frem Repert)

Distribution Unlimi

e ————————————
18. SUPPLEMENTARY NOTE)

19. KLY WORDS (Continue on reverses side If Racsssery and tdentily by Slock number)

Optimization, Strategic Nuclear War,

\ | i,

Nuclear Exchange, Optimal Attack, MaxMin, Nonlinear

Twc-Strike War

[S0\JABSTRACT (Continue on reveree oide i ory ond T O bloeh

maxmin problem. The model 1s approxi
plecewise linear model for which the
problem can be solved using a branch
Computational results are discussed.

‘
DD .’ Py ,, 1473  toimon o7 1 nov 8818 0BSOLETE
sEcumTY CL

Tnis paper describes a model of a two-strike nuclear
exchange that requires the solution of a nonlinear

mated by a separable,
resulting maxmin
and bound algorithm.

AN e



UisGLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

UCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Kntered)




e

-

@,

!

IDA PAPER P-1322

URTHER DEVELOPMENT OF A STRATEGIC WEAPONS

EXCHANGE ALLOCA'I TON MQDEL

/ 17 é é s z %\
(A s Ty

Q{O) Jeffrey H. /Grotte ;

e ———————— ST o

A
IDA

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION
400 Army-Navy Drive, Arlington, Virginia 22202

IDA Independent Research Program

[

H

t
#
¢




w4

ms ARl
ne coan T
L Thaod c
[ L1 e
Y QRS
& /'cr Sreial
CONTENTS

FOREWORD . v
I. INTRODUCTION . 1
II. THEORETICAL DEVELOPMENT . 3
IITI. WEAPON-ON-WEAPON INTERACTION 6
A. Surviving Blue ICBM Warheads 8
B. Surviving Blue SLBM-at-Sea Warheads . 9
C. Surviving Blue Bombs . 10
D. Surviving Blue SLBM-in-Pens Warheads 12
IV. VALUE DAMAGE FUNCTIONS 5 14
V. SOLVING THE MODET. . 5 15
VI. RESULTS . 5 20
A. Series 1--Multiples of Red's Total Arsenal -. 22

B. Series 2--Changes in Red ICBM Against Blue
Silo Kill Probability . o 25
C. Series 3--Changes in Red System Reliability c 27

D. Seriles k-- Changes in Blue Bomber Scramble
Probabilities . c s s 27
E. Series 5--Multiples of Blue's Total Arsenal . 27
ACKNOWLEDGMENT 32
REFERENCES 5 . 5 33

111




-

10

FIGURES

Strategic Exchange . . . . . . « « + o . .
Weapon-on~Weapon Interaction . . . . « « o « o o o
Piecewise-Linear Approximation . . . . . . . . . . .

Value Damage as a Function of Multi.lier of
Red Arsenal . ¢ « o « « ¢ ¢« « ¢ 4 e 4 e v e a0 e

Percent Red Weapons Assigned to Counterforce
lhissions as a Function of Multiplier of Red Arsenal

Value Damage as a Function of the Probability of

a Red ICBM Killing a Blue Silo, p{ e

Value Damage as a Function of Red System Reliability .

Percent Surviving Warheads as a Function of Red
System Reliability, I

Value Damage as a Function of Blue Bomber Scramble

Probabilities, n? e e

Value Damage as a2 Function of Multiplier of Blue
APEERE, o o0 06 o o 0o © 0 0 0 O 0 O O © @ O O O O O ¢

TABLES

Lower and Upper Bounds . . . . « ¢ ¢« « ¢« ¢ ¢ « o« « &

Base Parameters .« ¢« ¢ o o o o s o e o o o o e e

iv

19

23

24

26

28

29

31

18

21




e

~—

FOREWORD

This paper examines a two-sided strategic nuclear exchange
model invclving ICBMs, SLBMs, bombers and socletal value on
each side. The first striker allocates his weapons against the
second striker's weapons and value in such a way that, after
massive retaliation by the second striker, the difference between
the second striker's value destroyed and that of the first striker
is maximized. The paper presents computational results including
the sensitivities of the outcomes to various force characteristics.

The paper is a contribution to the literature in that it
incorporates realistic weapon-on-weapon attrition functions into
a formulation of the two-strike strategic exchange problem for
which globally optimal zllocations can be guaranteed.
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Chapter I
INTRODUCTION

Strategic weapons planning models based on two-strike nu-~
clear exchanges have been an integral part of strategic analysis
since the early 1960s. One line of research in this area hcs
been the development of models for which one could find "optimal"
allocations of weapons to targets. These mocels frequently took
the form of max-min problems wherein the first striker has a
choice of allocating his weapons against his opponent's value
targets (economic and industrial targets), thereby obtaining
immediate benefit, or of allocating those weapons against his
opponent's weapons, in the hope of reducing the impact of the
expected retaliation. This question of balancing counterfcrce
and countervalue targeting was perhaps academic when strategic
weapons were relatively Invulnerable. However, with lmproved
ICBM accuracy, this issue becomes iricreasingly significant.

Among the approaches used 1n the past to answer thils
problem were the Strategic Weapons Exchange Models, reported
in [1] and the Arsenal Exchange Model [2]. Neither of these
models con’d guarantee the globally optimal solution of the
max-min problem they considered. Both incorporated Lagrangian
solution procedures.

A branch-and-bound procedure was described by Bra-zken,
Falk, and Miercort in [3] in which they constructed a pilecewise-
linear approximation to their original two-strike nuclear ex-
change model and found the global solution to the plecewise-
linear model using an algorithm of Falk [5]. The Bracken, Falk,

TR L L e = Gt
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Miercort paper established that, in primeiple, this approach
could be practically applied in two-strike modelling.

This paper extends the Bracken, Falk, Mlercort approach
to a model of more Interestling detail, expliecitly modelling
ICBMs, submarines, and bombers. Realistic attrition equations
are developed, and the results of numerous computer runs of the
model are presented to demonstrate some of the remarkable re-
sponses of the model to parameter excursions.
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Chapter II
THEORETICAL DEVELOPMENT

Let us call the first striker Red and his opponent Blue.
Our scenario goes as follows: Red s%rikes first with all his
weapons on Blue's weapons and value, where the term "value"
represents Blue's capability to sustain its society, and may
include population, industry, and so forth. Blue then retallates
with all his remaining weapons agalnst Red value. This inter-
action is depicted in Figure 1.

First Striker Retaliator
(Red) (Blue)

— .

Figure 1. STRATEGIC EXCHANGE

Red has two concerns: flrst, to destroy Blue's value and
second, to preserve his own value through destruction of Blue's
retaliatory weapons. To 1investigate this further, we develop

some notation.

We will denote Red's allocation by x = {xij: i=1,...,I;
J=1,...,J}, where xij 1s the number of Red's class-1 weapons
directed against Blue class-j weapons for j=1,...,J-1, and X435
is the number of Red's class-1 weapons directed against Blue

value. Let Bj(g) represent the number of Blue's class-j weapons




T

»a

—

M

that survive an attack x, for j=1,...,J-1, and let y = {yl,.. }

be some Blue retaliation. If DB(K) represents the damage to

',yJ_l

Blue value resulting from attack x and Dp(y) 1s the damage to
Red value resulting from Blue retalliation y, then we use as our
objective function the difference

Dp(x) - Dp(y).

Blue desires to minimize this difference for any glven x, while
Red wishes to choose his attack x so that thlis expression 1s
maximized, taking Blue's retaliation into account. If my
i=1,...,I represents Red's initial inventory of class-1 weapons,
then this two-strlke war can be modelled vy the following mathe-
matical programming problem

mix min Dg(x) - Dp(y)

X L
subject to
J
321 4 $ My 1=1,...,I
Y3 = Bj(ﬁ) J=1,...,J-1
xij’yj > 0 i=1,...,1I; j=1,...,d.

This problem can be greatly simplified if we make the
rather weak restrictlon that DR(X) be monotone nondecreasing
in each component of y; 1.e., 1f Blue retaliates with any more
of any weapon type, then the damage to Red's value does not
decrease. With this restriction the problem becomes

max Dg(x) - Dp(B(x))

subject to

T e . w e T
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I
X,., < m, 1=1,...,1I
321 ij i
Xij >0 i=1, s I3 j=1, sd
B(x) = {By(x), By(x),...,B5_;(x)}.

This reformulation is crucial to our approach.

The next two

sections develop the functions Bj(x),...,B;_;(x), Dp(y), an8

DB(Z”—)'

PR
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Chapter III
WEAPON-ON-WEAPON INTERACTIONS

This chapter develops formulae for attrition of Blue weapon
resources resulting from a Red attack.

For the purposes of this paper, we will allow Red and Blue
four weapon classes each.! The weapon classes, with their dis-
tinguishing characteristics, are as follows:

Class 1--ICBMs. 1ICBMs are normally housed in silos, which
are attacked individually. The locations of the silos are
assumed to be known, and they may or may not be defended.

Class 2--SLBMs-AT-SEA. SLBMs-at-sea comprise those missiles
on submarines that are patrolling on station. Our model
permits these submarines to be attacked by strateglc weapons.
Submarines are attacked individually, the attacker i1s un-
certain of their location, and they are not defended.

Class 3--BOMBERS. Bombers are attacked in groups, at air-
fieldds of known location, where they may or may not be
defended. (A "group" of weapons is a configuration such
that an attack against any one of them 1s an attack agalnst
all of them.) Unlike missiles, bombers may be scrambled

on warring and called back, 1f necessary. The model assumes
five or fewer separate Blue airfields.

Class 4--SLBMs-IN-PENS. This class consists of SLBMs in
submarines that are avallable for strategic retaliation but
are in pens of known location. Thus, they must put to sea
before they can retaliate effectively. All submarines at
any given pen are attacked as a group and may or may not

be defended. We allow for three or fewer Blue pens.

lProblems involving more weapon classes can be and have been solved. For
instance, the IDASNEM model [U] developed at the Institute for Defense
Analyses, using the approach outlined in this paper, allows nine weapon
classes per side.
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If Red attacks Blue, and there are four weapon classes on
each side, then there is a maximum of sirteen weapon-on-weapon
interactions. However, because one wou’.d pay a pslice 1n pro-
longed run times if one were to allow all interactions, it is
desirable to disallow, a priori, certain unlikely weapon-on-
weapon interactions. For instance, it is unlikely that Red
bombers would be used against Blue ICBMs, since there would be
sufficient warning before the bombers' arrival to launch all
the ICBMs, thereby removing them as a target. All weapons may,
of course, attack value targets.

We will assume that Red ICBMs and SLBMs-at-sea may attack
any Blue weapon class. Red bombers, however, will only be
effective against Blue SLBMs-in-pens, provided we assume that
the latter require sufficient time to put to sea and so are
vulnerable to bombers. Red SLBMs-in-pens may only atfack value
targets. These relaftionships are summarized in Figure 2.

ICBMs - ICBMs

\4

SLBMs-at-Sea SLBMs-at-Sea

Bombers \\"‘ —~ Bombers

SS2>l

o<\

SLBMs-in-Pens , SLBMs-in-Pens
. %

Value Value

e 15 "x may attack y"
X Y

Figure 2. WEAPON-ON-WEAPON INTERACTIONS

7
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The following set of equations gives the Blue surviving
force after a Red attack. The attacking units mentioned below
are assumed to be warheads-~-when the attacking weapon is a
missile--or bombs (or SRAMS, for appropriate carameter values)
when the attackling weapon is a bomber. Note that we are re-

placing what are essentlially random variables with their expecta-

tions.

A. SURVIVING BLUE ICBM WARHEADS

n ¢ number of silos,
pf: probability of single shot kill of a silo due to a
B single attacking unit of class r,

Ppt individual reliability of an attacking unit of
class r,

Q,.: overall reliabllity of weapon class r; i.e., there
is a probability 1-qr that no weapons of class r
will function,

I

0 : probability that an attacking unit of class r will
penetrate silo defenses,

W : number of warheads per missile,

number of attacking units of class r assigned to
category "ICBMs."

We require that attacking units of any single type be uni-
formly distributed among the targets of a single category.
Therefore, the number of attacking units assigned to each silo
1s xrl/nI. Then, the probabili%y that an individual silo sur-
vives an attack by weapon class r, provided weapon class r does
not fail, is

[ I I\ xrl/nI
Taking into account the probability that weapon class r might
fail, the probability that a silo survives an attack by weapon
class r 1is




I I xrl/nI
- \ -
(1 q,) t qr(l Ppr 9y PL ) :

Therefore, recalling that only Red weapon classes 1 and 2 will
attack Blue ICBMs, the probability of a silo surviving the full
attack 1s

I
X, /n
I I\'rl
(1-q,) + qr(l—or o, PL )

2
I

r=1

and so the aprroximate expected number of surviving Blue ICBM

warheads is

17T 2
Ww'n ) 3(1-qr) + qr(l—pr o
r=1

I
I 1)\ %/"
r'pr

B. SURVIVING BLUE SLBM-AT-SEA WARHEADS
n : number of submarines-at-sea

7 : probability that Red will correctly acquire the
location of an individual submarine,

P>+ probability of single shot kill of a submarine
due to a single attacking unit of class r,

p_: 1individual reliability of an attacking unit of

r class r,
q,: overall reliability of class r,
ws: number of warheads per missile,
YS: number of missiles per submarine,
Xt number of attacking units of class r assigned to

the category "SLBMs-at-sea."

As with ICBMs, we assume that the number of class-r attack-
ing units assigned to each submarine is xr2/ns. Considering
only class-r attacking units, the probabllity that a single
submarine will survive is




? S xre/ns
(1"91.. pI‘ ) ’

if weapon class r does not fail. TakZug this possibility into
account, the probability of submarine survival is

S xrz/ns
: (1-0,) + 0, (20, o7)
Now, the probability that the submarine will survive an attack

’ by Red weapon classes 1 and 2 is

S
2 X_,/n
S r2
rzl (1-q,) + qr(l_pr pr)

i A1l the above assumes that the location of the submarine 1is
known. Considering the possibility that the submarine's locatlon
will not be acquired, the probability of submarine survival 1s

S
i 2 X_~/n
S S S r2
(1-17) + 1 rgl (1-q,) + qr<1-pr pr)
Hence the approximate number of surviving Blue SLBM-at-sea
" warheads 1s
S
2 \X_,/n
nSwSyS 1118 + 5 1 {(l-q ) +q (1—9 p> ) T2 } .
Pi] r r r “r
¢ .
C. SURVIVING F.LUE BOMBS
r
\
v;: number of bombers at airfield n (n=1,...,5) (this
may be 0 when there are fewer than 5 airfields),
* ngz probability that a bomber will successfully
scramble from airfield n,
; pg ot Drobability that a bomber at airfield n will be
3

destroyed when airfield n is attacked by a single
class-r attacking unit,

p.: 1individual reliability of a class-r attacking unit,

10
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Q, overall reliability of weapon class r,
oﬁ i probability that a class-r attacking unit will
’ penetrate the defenses of airfield n,
yﬁ: number of bombs per bomber at airfield n,
X_,: number of class-r weapons allocated to "bombers"
r3 (r=1,2).

We will require that attacking units be allocated propor-
tionally to the number of bombers at each airfield, thus airfield

n receives

weapons of class r. The probability that a bomber at airfield
n survives a class-r attack, assuming no scramble and no overall

fallure of weapon class r, therefore is

5
B B
B B Mn xr3/ Z mn

(l—p:' on,r pn’r> n=1

Including the probabllity of successful scramble, the probability
of survival 1s

B
B B B B m, Xp3/
Ny + (2-npy) (l'pr %n,r n,r)

Recalling that the probability that weabon class r will fail as
a class 1is 1—qr, the probabllity of survival of a single bomber
is

3
B B
m- x ./ ) m
B) (l_pr o8 pB ) nr3 z; N

B
+ (1-n n,r "n,r

(l-qr) ta, {n, n

Hence, the probability that a single bomber will survive the
full attack 1is

11
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B
B B )mnxr'3/

B
+ (l-ng) (l-p a p

m
1“}.

The approximate number of bombs surviving at airbase n is

ngg times the above expression, so that the total number of

it e~

B

2
I (l_qr) taq, {nn n

r n,r “n,r

r=1

bombs remaining 1is

(93]

; BE 4 laeqy s {B+(1_B) Lo B B mﬁXﬁ/Zl“ﬁ}
= T el YD) T %" M °r %n,r Pn,r n= (-
D. SURVIVING BLUE SLBM-IN-PENS WARHEADS
mg: number of jubmarines in pen n (n=1,2,3) (may be
0 when there are fewer than 3 pens),
pg r protability of single shot kill of a submarine
? in pen n due to a class-r attacking unit,
opt individual reliability of a class-r attacking
unit,
q,: overall reliability of class r,
oi : probability that a class-r attacking unit will
o T penetrate the defenses of pen n,
wgz number of warheads per misslle in pen n,
yﬁ: number of missiles per submarine in pen n,

' Xyt number of class-r attacking units assigned to
"SLBMs-in-pens" (r=1,2,3).

As with bombers, pens will be attacked in proportion to
the number of submarines in each. Thus, the number of class-r
attacking units assigned to pen n is

3
P P
My xru/nzl My -

If class r does not fail, the probability that a submarine in
pen n will survive all class-r attacking units is

12




L s

>

3
P P
PP \™ X4/ L ™
<l'pr In,r pn,r) =l )
Including the overall reliability, the probability that a sub-

marine will survive is
3
P P
m_x_,/ ) m
P P n “rls & n
;(l-qr) *a, (l-pr %n,r Pn,r ) n=l

Thus, the probability of the submarine surviving the full attack
is

3

3
P P
P P )“%,Xru/ngl n

3
Z (l—qr) ta, (l-pr %h,r Pn,r

r=1

so that the approximate number of SLBM-in-pens warheads that

survive is

% whyPmE % (1-q.) + l-p ¢
Lo ¥n¥n™n r=l 9 9r °r %n,r Pn,r

n=1
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Chapter 1V
VALUE DAMAGE FUNCTIONS

For the purposes of thils paper, let us suppose that damage
to value on both slides can be adequately described by the
following two functions:

b vB
B i
Vv 1—exp<— Uy X )),
B( igl S

it vR
VR(J-exp( ) u? Y5 J»,

_j=1

Dp(x)

D (¥)

where VB and VR are the aggregate Blue and Red values and the
parameters u?, u?, v? and v? have been determined. This deter-
mination can be made using curve fitting techniques on the
results of a one-sided allocation model for samples of possible
Red attacks and Blue retaliations. It 1is not even a requirement
of this approach that these functions be expressible in explicit

{orm. For instance, the IDASNEM model uses the output of a sub-

routine that assesses the damage against up to two thousand tu.r set

classes per side.

14
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Chapter V
SOLVING THE MODEL

The foregoing allows us to write explicitly the model:

( g B v? 4 R v?
maximize V 1—exp<— u; X ))-—'V l—exp(— U, y ))
X B 121 i 715 R jZl J Y3
subject to

5

J4 xij < my i=1,...,4

2 1 1)\ /"
y; =vwn 121 (1-q4) + qi(l Py Oy pi)

2 /n
S.S.S S S i2
Y4 = n°w'y 3(1—1 ) + 1 n (l1-q9,) + q (1 p; P ) z
2 1=1 { i i i*1 }
5
B + B
5 X/ L
vy = Zl \(Errg1 i(l—qi) +q {1 + (l-n ) (1 =Py O ﬁ 1 pg 1)rrh 13/k=1 "‘k}s
n=
3
)3 )3
3 m X,/ ! m
Yy = Zl Wi*f:"h ’(l_qi) ¥ qi(l“’i %n,1 P 1) P
n= 3 [}
Xi‘j 2 0 i=1’oc',u J=1,00¢,5
Y >0 J=l,.. .4

We solve this problem using the approach of [3]; that is,
we first introduce new variables and perform some elementary

15
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manipulations to put the probiem in separable form--in which each
function g(gz), where 7 = (c,...,cm), is of the form

g(g) =

e =]

g;(z4).

i=1

In separable form, this prollem is

maximize ’VB<l—exp(-€B)> - VR<l-exp(-£R))$

subject to

4 vB
B B i
E° < ] uy X
1=1 715
R
4 v
R R 3
£ 2 le My 2y
; 11,00
X £m =1, ’
LI I
I
2 X,,/n
In z, - ln(wInI) 2 izl 1n (l—qi) + qi(l—pi oi pi ) 11 f
S
z 2 X,,/n
2 S 1l S i2
in < 5 - (1-7 ))——] > ] 1n}(1—q ) +q (1—9 p )
[ nSwSy 8|5 & 1 1\*7P1 Py
5
E _B .B
oy & nzl Yn ™ Cn
5
B B
2 m X,/ ]
B B B n 13/ L M
In Cﬁ 2 151 In ;(1-q1) tqy {nn + (1-n) (lrpi °§,1 pn,ih) 1=1 }f
n=l,...,5
5
P_P_P P
2y 2 nzl n Yn M Cn
16
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3 mP:x / % ni
P P P iy e -
In Cn > izl In }(l—qi) + qi(l—pi On,i pn,i) k=1 n=l,...,3
R B B P
All xij’ Zj’ £, &7, Cn’ Cn > 0. Note that we have changed some

equalities to inequalities. This was done only to improve the
efficiency of the computation. It 1s apparent by monotonicity
that all lnequalitles will be equalities at the optimal solution.

The next step 1s to place upper and lower bounds on all the
varliables. This can easily be done because the allocations on
each side are bounded by the available resources. The bounds
appear in Table 1. In ordc~ to save space in this table, we
have occasionally employed the notation 2(z) and u(z) to denote
the lower and upper bounds on variable 7, respectively.

Because the problem comprises only scalar functions ¢f
bounded variables, and because these functlons remain bounded
over their domains, we can approximate these functlons by
piecewise?linear functions in the following way.

Each function g(gz) In the separated problem 1s a function
of a scalar varlable for which we have lower and upper bounds
2(z), u(z). We divide the interval [2(Z), u(z)] into subintervals
determir :d by the "cut points' t°, t‘,...,tk where t° = 2(7),
£k = u(z) and t° < t! < t?2 < ... < tX.  Then we compute g(ti)

for 1 = 0,...,k and form the plecewise-linear function

! 1
- .‘.
b B(t) = JE—g [g(ti 'y - g(t%] + g(th)
: t -t
for t ¢ [ti, ti+1] 1=0,...,k-1.
i
This process 1s depicted in Figure 3.
The problem thus gencrated will be called the "plecewlse-
linear two-strike problem." Since all functions in the separated
t problem are conctinuous, so are all the functions of the plecewlse-
linear problem. Further, by taking enough cut points for each
17
¢
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Table 1. LOWER AND UPPER BOUNDS
Variable Lower Bound Upper Bound
Xij (i=1’-oo’4: j=1’ooo’5) 0 mi
I 1 I1I
Z won (l-ql)(l-qz) wn
z, nswsyS l—rs+rs(1-q1)(1-q2) nswsyS
5 5
B B B B B
2 I oy, mooa(CH) I oyoom
3 3
P P P P PP
z Towo v, &(CH) I ow y.m
4 neg MM n psy NN
B
4 v
k=1
R R
4 v 4 v
R R k R k
g I g [a(zp)] A IES]
R L P
B (n=1 5) ; (1-q; + By 1
n e =g 31 T 9 M
P 3
\l'\ (n=1, 0,3) H (l-qi) 1
' i=1

variable, the plecewise-linear two-strike problem can be made to

approximate the original two-strike problem arbitrarily closely

acccerding to any of a number of standard measures of closeness.

The plecewise-linear problem has the advantage that it can

be solved using a practical branch-and-bound algorithm developed

by Falk [5].
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This algorithm has been programmed for the computer
twice. The NUGLOBAL code [7] used by Bracken, Falk, and Miercort
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!
developed problems when applied to the model we have described
above. A more stable code was developed by Grotte [6] and was
the code used in the runs described below.
H
'
{
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Chapter VI
[LESULTS

The piecewise-linear model was run on a CDC 6400 computer.
For all runs, upper and lower bounds were computed as described
above and eight cut points per variable were chosen as follows.
Noting that all functions g(z) in the separated two-strike model
had derivatives that were largest in absolute value for small
£, and that decreased in absolute wvalue as T increased, wc felt
that small intervals for small g, and large intervals for large
z, should be used for constructing the piecewise-linear approxi-
mating function g(g). Therefore, 2(z) and u(z) were computed
first, r = u(g) - (g)/ 127 was then calculated, and the cut

points for r were chosen to be

el - gy + -y 1=0,...,7.

In this way, each subinterval was twice the length of the one
preceding 1t, ensuring that there would be small subintervals

at the low end of the interval [2(g), u(z)] and larger sub-
intervals at the high end. In practice, this procedure produced
better results than using many more intervals of uniform length.

Our investigation of the responses of the model begins with
a base case set of parameters. These are listed in Table 2. A

number of serles of runs were performed in each of which a specific

subset of parameters was varied in a systematic fashion. Certain
model outputs wer:2 then graphed to demonstrate the sensitivity
of the model to parameter changes. These are discussed below.
Each run took between 100 and 200 seconds of CPU time.
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Table 2.

BASE PARAMETERS

L ar £

u

5000.0
5000.0

0.0005

0.0003

0.0003

0.0003

1000.0

6.0

50.3

10.0

16.0

0.3
5.0

10.0

10.0

10.0

10.0

10.0

3 3 3
W LW W@ N —~®

6000.0
1800.0
1500.0
1200.0
0.0005
.0003

. 0006

.0003

= 0.
0.
0.
0.

[}

9999
9999
9999
9900

.65

.95

= 0.95

= 0.95

= 0.95

= 0.95

0.95

o o o o
O o o

[}




§
Table 2. BASE PARAMETERS (continued)
§
B _ B _
p11 = 0097 p12 - 0-97
B _ B _
i Poy = 0.97 Poo = 0.97
B _ B _
p31 - 0097 p32 = 0097
B _ B _
Pgy = 0.97 Pgo = 0.97
k
B _ B _
Pe1 = 0.97 Pgo = 0.97
NP = 3.0
§
P _ P _ P _ P . P _ P _
Wy = 10.0 Y4 16.0 m1 25.0 o4 0.9 9y 0.9 94 0.
P - P - P & P = P = =
W2 = 10.0 Y2 = 16.0 2 = 25.0 02 = 0.9 02 0-9 02 = Oo
t
P _ P _ P _ P _ P _ P _
Wqg = 10.0 Y3 © 16.0 3 = 25.0 0 = 0.7 o3 = 0.7 o3 = 0.
P _ P _ P _
p11 = 0.85 p12 = 0.85 P13 = 0.85
¢t
P _ P _ P _
p21 = 0085 p22 = 0-85 p23 = 0085
P _ P P _
p31 - 0-95 p32 - 0-95 p33 = 0095
S
A. SERIES 1--MULTIPLES OF RED'S TOTAL ARSENAL
The first series of runs demonstrates the effects of changes
in the number of weapons in each Red weapon class. This was
achieved by multiplying the basic values of the parameters ml,
mys Mg and my by 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0 so that the range of 20 percent to 100 percent of the basic
L Red arsenal was covered. Inspection of the resulting damage

curves in Figure 4 shows that as Red's arsenal increases, Red's

22
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ability

to destroy Blue's value increases almost linearly, but

Red's ability to protect itself from Blue retaliation does not

Iimprove
arsenal
between

arsenal

for force levels above about 50 percent oi the basic
size. Figure 5 indicates how Red allocates weapons
counterforce and countervalue missions for various

sizes. Note that for small arsenals, Red's optimal

strike involves a relatively high level of counterforce operatlons.

70

30

PERCENT COUNTERFORCE WEAPONS

20
10
0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MULTIPLIER
227614

Figure 5. PERCENT RED WEAPONS ASSIGNED TO COUNTERFORCE MISSIONS

AS A FUNCTION OF MULTIPLIER OF RED ARSENAL
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B. SERIES 2--CHANGES IN RED ICBM AGAINST BLUE SILO KILL

PROBABILITY :

For the second series of runs, we changed only p{, which
represents the probability of single shot kill of a Red ICBM
warhead against a Blue silo. Figure 6 exhibits the resulting
value damage curves. It is apparent that for values of p{
below about 0.5, changes in ICBM hard-target kill probability
make little difference in the outcome. Observe that as p{
increases, the damage differences increase, which 1s expected;
but total damage to Blue value generally decreases, sincz the
more effective Red ICBMs are diverted from the c untervalue
atfack in a successful effort to reduce retaliatory damage to
Red. Note the undulatory behavior of the curves. We can inter-
I less than 0.4, Red's attack

1
remalns the same, resulting in level damage curves for both

pret Figure 6 as follows: For p

Blue and Red. For p{ between 0.4 and 0.6, Red can take advantage.
of increased ICBM effectiveness and so divert some of these
weapons from countervalue to counterforce missions. With fewer
weapons against Blue value, the damage to Blue decreases.

Damage to Red decreases because of increased counterforce attack.
As p{ increases between 0.6 and 0.7, Red finds he can accomplish
the same counterforce goal with fewer ICBMs and so he reapplies
the excess to countervalue assignments, thereby increasing the
damage to Blue while keeping the retalliatory damage to himself
constant. For pi between 0.7 and 0.75, Red can cause more
counterforce damage with fewer weapons so that damage to himself
actually begins to drop while damage to Blue still increases.
Between p% = 0.75 and p{ = 0.9, Red again diverts weapons frorm
value targets to Blue ICBMs, so damage to both sides decreases.
For pi above Q.9, the curves begin to repeat the behavior seen for
p{ greater than 2.6. This behavior results from rapidly changing
allocations as P] changes, and indeed, one should note that in
the case of a "flat" global optimum, or in the case of many

local optima, all with values close together, the &llocations

25
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may change almost discontinuously as certain parameters are
varied, even though the objective function changes smoothly.

C. SERIES 3--CHANGES IN RED SYSTEM RELIABILITY

This serles of runs was conducted by assigning the values
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, one at a time, to
all parameters ql’ d5s q3, and Qe These parameters represent
the system reliability of Red's four weapon classes against
Blue weapons only. The resulting damage curves are displayed
in Figure 7. Note the swift decline 1n the damage suffered by
Red as compared with the much slower decline in the damage suf-
fered by Blue as Red shifts weapons of increased reliability to
counterforce operations. Contrast the nonmonotonic behavior of
the Blue damage curve to the strictly decreasing Red damage
curve and the smooth rise of the damage difference curve. Filgure
8 shows how the ~urviving fraction of Blue warheads changes for
each class. Observe that for low Red system reliabilitles, Blue
weapon class 1 (ICBMs) survives better than Blue weapon class 3
(Bombers), while for high Red system reliabilities, Blue weapon
class 3 has the edge. |

D. SERIES 4--CHANGES IN BLUE BOMBER SCRAMBLE PROBABILITIES

This serles tests the effect of varying the Blue Bomber
scramble probabilities. The variation was effected by assign-
ing the values 0.5, 0.6, 0.7, 0.8, and 0.9, one at a time,
Jointly to n?, ng, ng, nﬁ, and ng. The damage curves appear 1in
Figure 9. The resuvlt 1s that, as alil the n? increase Red 1s
not induced to change hils attack, but Blue can inflict greater

retaliatory damage owing to his improved bomber survivavility.

E. SERIES 5--MULTIPLES OF BLUE'S TOTAL ARSENAL

The last series examines what happens when Blue's arsenal
is increased over the basic values, by multiplying the basic

27
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Figure 7. VALUE DAMAGE AS A FUNCTION OF RED SYSTEM RELIABILITY

= I s B B _B B _P
values of all th meters n-, n°, m-, m,, M mB, ms, m s

e a my 3 M
mb, and mg by 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5. Figure 10

displays the damage curves. While an 1lncreased Blue arsenal

-

improves Blue's retaliatory carabllity, it further serves a
secondary role of drawing Red's attack away from Blue's value
targets.
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